RULES OF THUMB FOR PAINTING AND ESTIMATING

"Rules of Thumb" are general guidelines and are often used for the purposes of estimating. These do not always give "exact" numbers but are intended to provide a good working number.

Definitions: **R** – Radius; **D** – Diameter; **LF** – Lineal Feet, **SF** Square Feet;

W – Width; **H** - Height

Estimating Square Footage:

To get Square footage on

To get Square footage on		
Caged Ladder	Mutiply LF by	10
Handrails	Mutiply LF by	4
Grating	Mutiply LF by	4
Stairs with 1 Hand Rail	Mutiply LF by	10
Stairs with 2 Hand Rails	Mutiply LF by	15
Walkway with 1 Hand rail	Mutiply LF by	15
Walkway with 2 Hand	Mutiply LF by	20
Rails		
Solid Floor Plate	Mutiply LF by	15
Cylinder	Mutiply LF by	D x 3.142
Sphere	Mutiply	D x D x 3.142
Circle	Mitiply	R x R x 3.142
PIPING		
1/2 " to 3"	Mutiply LF by	1.00
4	Mutiply LF by	1.19
6	Mutiply LF by	1.74
8	Mutiply LF by	2.26
10	Mutiply LF by	2.81
12	Mutiply LF by	3.34
14	Mutiply LF by	3.665
16	Mutiply LF by	4,19
18	Mutiply LF by	4.71
20	Mutiply LF by	5.24
24	Mutiply LF by	6.28
28	Mutiply LF by	7.33
30	Mutiply LF by	7.85
34	Mutiply LF by	8.90
36	Mutiply LF by	9.425
42	Mutiply LF by	10.10
Other Shapes		
Joists (Treat as solid	Mutiply LF by	2 x H
surface)		
Stacks	Mitiply H	Average D *3
Corrugated Metal 2 1/2"	Mutiply LF by	1.08 x H
Corrugated Metal 1 1/4"	Mutiply LF by	1.11 x H

Estimated Losses: Brush or Roller: 10%; Airless Spray: 20%; Conventional Spray: 30%

PAINT CLACULATIONS

Theoretical Coverage 1 mil of 100% Solids Coating covers 1604 ft²/WFT

Practical Coverage Theoretical Coverage x % Loss

Dry Film Thickness = DFT in mils Wet Film Thickness = WFT in mils All % are by volume and expressed as a decimal i.e. 60% = .60

DFT = WFT x (% Solids)

$$DFT = WFT \left(\frac{\% Solids}{(1 + \% Thinner)} \right)$$

WFT =
$$\frac{\text{DFT}}{\text{\%Solids}}$$

WFT =
$$\frac{\text{DFT}}{\left(\frac{\text{\%Solids}}{100\% + \text{\%Thinner}}\right)}$$

SURFACE CONTAMINATION CLACULATIONS

If you are measuring the salts using a conductivity meter

ppm = μ S * 0.7 (This is the most common value however I have seen numbers from 0.67 tp 0.85)

 $\mu g/cm^2 = ppm \ x \ ml \ water / Area Measured$